

SAE Technical Paper Series

880645

MADYMO 3D Simulations of Hybrid III Dummy Sled Tests

J. Wismans and J.H.A. Hermans

TNO Road-Vehicles Research Institute

Delft

The Netherlands

International Congress and Exposition

Detroit, Michigan

February 29 — March 4, 1988

The appearance of the code at the bottom of the first page of this paper indicates SAE's consent that copies of the paper may be made for personal or internal use, or for the personal or internal use of specific clients. This consent is given on the condition, however, that the copier pay the stated per article copy fee through the Copyright Clearance Center, Inc., Operations Center, 21 Congress St., Salem, MA 01970 for copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law. This consent does not extend to other kinds of copying such as copying for general distribution, for advertising or promotional purposes, for creating new collective works, or for resale.

Papers published prior to 1978 may also be copied at a per paper fee of \$2.50 under the above stated conditions.

SAE routinely stocks printed papers for a period of three years following date of publication. Direct your orders to SAE Order Department.

To obtain quantity reprint rates, permission to reprint a technical paper or permission to use copyrighted SAE publications in other works, contact the SAE Publications Division.

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher.

ISSN 0148-7191
Copyright 1988 Society of Automotive Engineers, Inc.

Positions and opinions advanced in this paper are those of the author(s) and not necessarily those of SAE. The author is solely responsible for the content of the paper. A process is available by which discussions will be printed with the paper if it is published in SAE Transactions. For permission to publish this paper in full or in part, contact the SAE Publications Division.

Persons wishing to submit papers to be considered for presentation or publication through SAE should send the manuscript or a 300 word abstract of a proposed manuscript to: Secretary, Engineering Activity Board, SAE.

MADYMO 3D Simulations of Hybrid III Dummy Sled Tests

J. Wismans and J.H.A. Hermans

TNO Road-Vehicles Research Institute

Delft

The Netherlands

ABSTRACT

This paper presents a three-dimensional 15-segment model of the Hybrid III dummy for the MADYMO 3D Crash Victim Simulation program. The model is based on measurements conducted on two Hybrid III dummies by Wright Patterson Air Force Base. Results of MADYMO 3D simulations will be compared with Hybrid III sled tests conducted by Ford Motor Co. These tests were conducted at three different impact severity levels. For the three test conditions good agreement between model and experimental results could be observed for most of the output parameters. Recommendations for further model improvements will be made.

simulations, respectively. Both versions have been used extensively in the past for the simulation of frontal crashes, pedestrian and cyclist accidents, side impacts, sport accidents, etc....

This paper is related to the application of MADYMO 3D in a frontal crash environment. A mathematical model (= input data set) of the Hybrid III dummy will be presented. This dummy is generally considered to be one of the most advanced crash test dummies available at the moment. The MADYMO 3D Hybrid III database presented here is mainly based on measurements conducted by the Biodynamics & Bioengineering Division of the Harry G. Armstrong Aerospace Medical Research Laboratory, Wright Patterson Air Force Base in Ohio, USA. (Further referred to as WPAFB). These measurements were carried out on two dummies: one standing dummy and one sitting dummy (2). The work presented here is part of the activities conducted by the Analytical Human Simulation Taskforce of the SAE Human Biomechanics and Simulation Subcommittee. As part of the work of this Taskforce also a series of Hybrid III sled tests have been carried out by Ford Motor Co. (3). These tests will be used here for validation of the proposed MADYMO 3D Hybrid III model.

Similar model validation studies have been carried out by Prasad (4) for the MADYMO 2D model, by Obergefell et al. (5) for the ATB-CVS program and by Khatua (6) for the CALSPAN CVS program.

In the next section the Hybrid III dummy model will be formulated followed by a section describing the model of the environment of the Hybrid III dummy, i.e. the sled and the restraint system. In the subsequent section model predictions will be presented together with experimental results. A final discussion concludes this paper.

0148-7191/88/0229-0645\$02.50

Copyright 1988 Society of Automotive Engineers, Inc.

* Numbers in parentheses designate references at end of paper

HYBRID III DUMMY MODEL

SEGMENT SELECTION - Fifteen segments have been selected in this study to define the Hybrid III dummy in MADYMO 3D. Segment numbers and segment names are summarized in Table 1. In the measurement program conducted by WPAFB a similar segment division was used except for the hands which were measured separately. In the model proposed here the hands have been included in the lower arm segments. A reprint of the computer output of MADYMO 3D explaining the selected MADYMO input data is given in Annex A. For an explanation of this input description see the MADYMO 3D User's Manual (7). In the following sections the most important input parameters will be discussed briefly and the most important model assumptions will be summarized.

TABLE 1 - ELEMENT NAMES OF MODEL OF HYBRID III DUMMY

Element number	Element name
1	Lower Torso
2	Spine
3	Upper Torso
4	Neck
5	Head
6	Upper Arm Left
7	Lower Arm Left
8	Upper Arm Right
9	Lower Arm Right
10	Upper Leg Left
11	Lower Leg Left
12	Foot Left
13	Upper Leg Right
14	Lower Leg Right
15	Foot Right

LOCAL COORDINATE SELECTION - For each segment a local right-handed coordinate system (x,y,z) has been defined. For the sitting position illustrated in Fig. 1 all local z-axes are directed upward, all x-axes are forward and all y-axes to the left. Table 2 specifies in more detail the location of these local coordinate systems. The origins of the coordinate system of the limbs and the lower torso have been selected in the joint centers of rotation. For the other segments the coordinate system origins were chosen in the centers of the end planes of the rubber cylinders representing neck and lumbar spine.

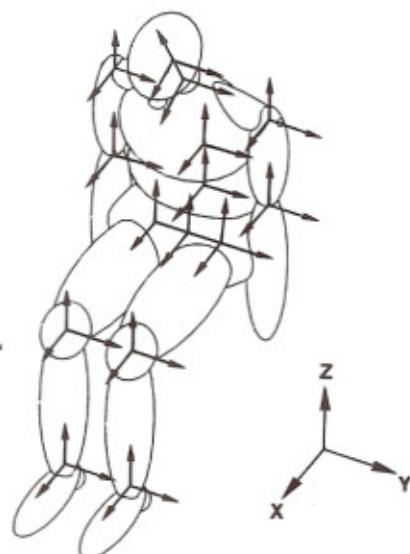


Fig. 1 Location of local coordinate systems.

MASS DISTRIBUTION - Segment masses, centers of gravity and principal moments of inertia are based on rough data obtained from WPAFB in the beginning of 1987. In certain cases these rough data will differ from the data to be presented in the final report of WPAFB which is planned to be published in 1988 (8). In the input dataset principal moments of inertia of less than 0.01 kg.m^2 have been set at 0.01 kg.m^2 in order to reduce the computer time (cpu) required for a simulation. The influence of this on the simulation results is negligible. WPAFB measurements show that for most segments the deviation in orientation between principal moments of inertia axes and local coordinate system axes is small. Only the head principal axes appear to deviate significantly. Consequently it was decided to introduce a separate principal moment of inertia coordinate system only for the head. In the other segments the orientation of this coordinate system is taken identical to the segment local coordinate system orientation.

JOINT PROPERTIES - In MADYMO 3D two types of joint models can be distinguished (1). The cardan joint model was used to simulate shoulder, elbow, hip, knee and ankle joints. The flexion-torsion joint model was chosen to approximate the neck and lumbar spine flexibility. For each segment member of a joint, a local joint coordinate system has to be defined. The orientation of these coordinate systems has been selected such that for the sitting position of the dummy which is illustrated in Fig. 1 both joint coordinate systems of a joint coincide. Fig. 2 presents the location of the joint local coordinate systems for which the orientation differs from the orientation of the local coordinate system.

TABLE 2 - SPECIFICATION OF LOCAL COORDINATE SYSTEMS*

Lower Torso	origin: y-axis: x-axis:	H-point. Along centerline through left and right hip center. Pointing forwards parallel to pelvis top plane.
Spine	origin: y-axis: x-axis:	The center of the plate on the lumbar spine which attaches the pelvis and the spine. Parallel to centerline through left and right hip center. Parallel to x-axis of the lower torso local coordinate system.
Upper Torso	origin: y-axis: x-axis:	The center of the plate on the lumbar spine which attaches the spine and the upper torso. Parallel to centerline through left and right hip center. Parallel to x-axis of the lower torso local coordinate system.
Neck	origin: z-axis:	Center of the lower aluminium neck spacer. Along centerline neck.
Head	origin: z-axis:	Center of the neck/head pivot. Along centerline neck.
Upper Arm	origin: x-axis: z-axis:	Center of shoulder pivot for abduction/adduction motion. Along centerline of shoulder pivot for abduction/adduction motion. Along the line between center of shoulder and elbow pivot.
Lower Arm	origin: y-axis:	Center of elbow pivot. Along centerline of elbow pivot.
Upper Leg	origin: y-axis: x-axis:	Center of hip. Along centerline through left and right hip center. Intersects the knee centerline
Lower Leg	origin: y-axis: z-axis:	Center of the knee. Along centerline of knee pivot. Along the line between center of knee and ankle pivot.
Foot	origin: z-axis:	Center of the ankle. Along the line through center of knee and center of ankle.

* Note: if not specified in other way, all positive x-axis are forward, all positive y-axis are to the left and all positive z-axis are upward (in sitting position)

Both the cardan joint model and the flexion-torsion model allow three degrees of freedom. Joint motions in MADYMO 3D can be suppressed by defining relatively stiff elastic joint characteristics. The number of degrees of freedom allowed in the various joints of the present model is summarized in Table 3. The Hybrid III shoulder assembly allows motion in four pin joints: two joints for rotation of the shoulder assembly relative to the thorax and two joints for rotation of the upper arms relative to the shoulder assem-

bly. Both rotations of the shoulder assembly have been neglected in the model.

Most of the elastic joint properties in the model have been derived from the rough data provided by WPAFB. Values for the neck and lumbar spine were based on additional data obtained from Ford Motor Co. (4). Due to the limited information available no separate bending properties for rearward and lateral bending in the neck and lumbar spine could be defined in the present model. Properties in these

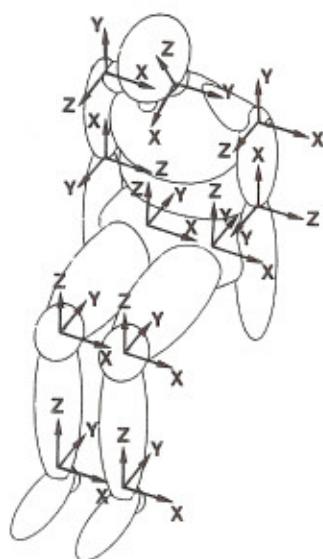


Fig. 2. Orientation of joint coordinate systems in dummy reference position for which the orientation differs from the orientation of the local coordinate systems.

directions have been chosen identical to frontal flexion data. For the validation studies presented here the effect of this is expected to be small. Most of the damping coefficients have been estimated assuming that the joints are less than critically damped. First a rough estimate was made of a critical damping coefficient; the actual values in the model were selected below this critical damping depending on the type of joint. Friction torques have been calculated assuming that the dummy joints are preset to hold the segment in a static equilibrium position (1G setting). The upper and lower arm are both kept horizontally. For the hip joint both lower leg and upper leg are placed in a horizontal position.

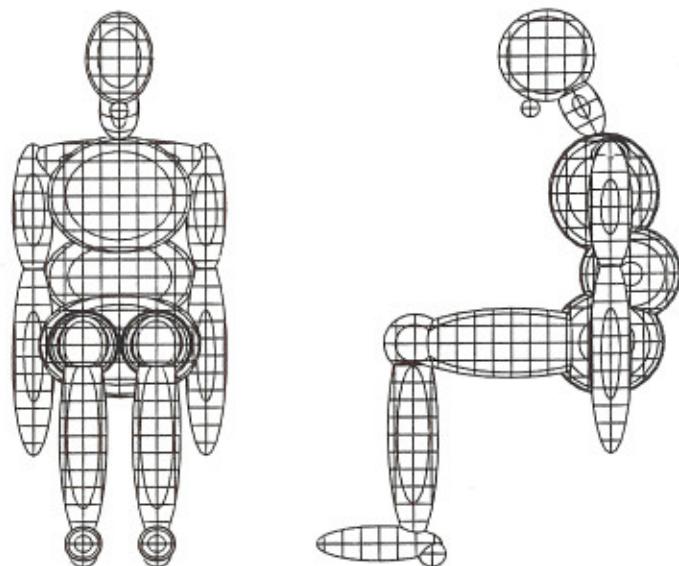


Fig. 3 Contact ellipsoids in Hybrid III model.

CONTACT ELLIPSOIDS - Results of the WPAFB measurements include dimensions and locations of dummy segment contact ellipsoids. The contact ellipsoids in the MADYMO 3D have been specified based on this information and additional data contained in technical drawings of the Hybrid III dummy. Fig. 3 illustrates the resulting Hybrid III surface description.

MODEL OF SLED AND RESTRAINT SYSTEM

A series of sled tests with the Hybrid III dummy in a three-point harness system have been carried out by Ford Motor Co. (3). Dummy responses for three levels of impact severity are available. The peak

TABLE 3. DEGREES OF FREEDOM IN JOINTS OF HYBRID III MODEL.

joint	degrees of freedom	type of motion
neck (upper and lower)	3	bending (x/y)* and torsion (z)*
spine (upper and lower)	3	bending (x/y and torsion (z)
shoulders	2	flexion-extension (x) and adduction abduction (z)
elbow	2	flexion-extension (z) and twist (x)
hip	3	flexion-extension (x), twist (z) and adduction-abduction (y)
knee	1	flexion-extension (x)
ankle	1	flexion-extension (x)

* for explanation of rotation axes; see MADYMO User's Manual (7)

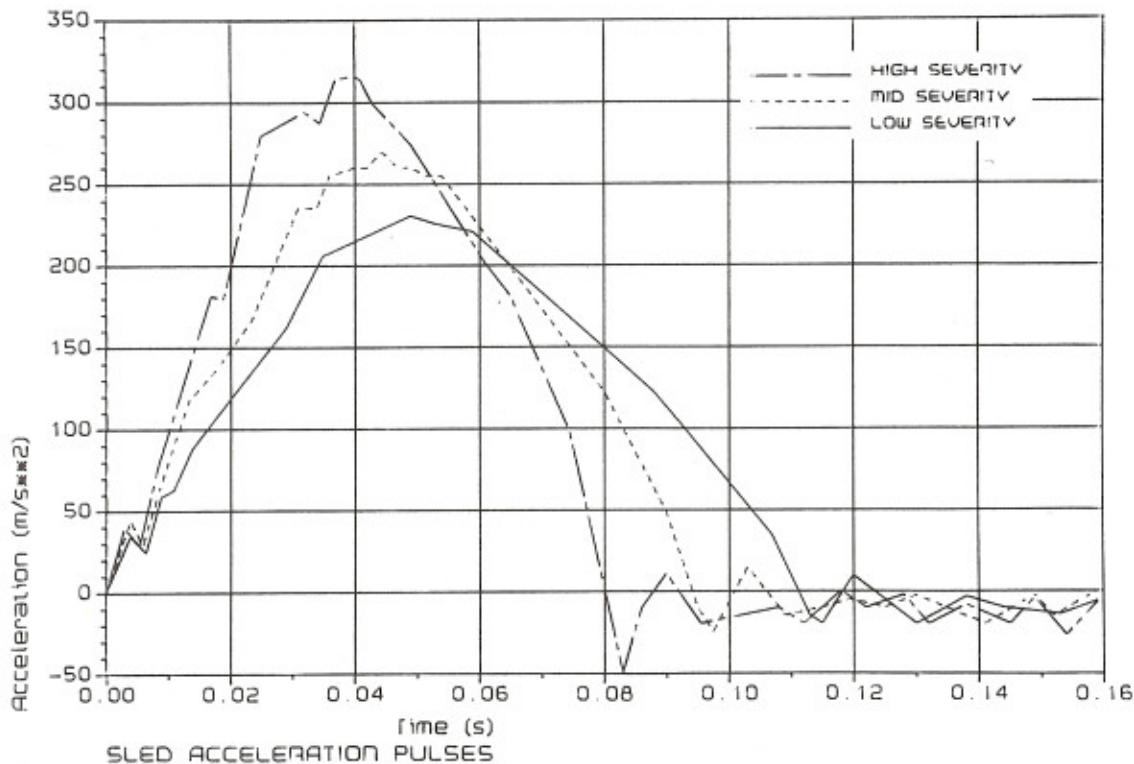


Fig. 4 Sled acceleration-time histories used as input in MADYMO.

values for the sled acceleration of the low, mid and high severity tests were 23.5, 27.5 and 32.2 G, respectively. The sled velocity in these tests was 15.3 m/s. MADYMO 3D simulations have been carried out for all three impact severities. Fig. 4 shows the sled acceleration-time histories used in the simulations. The initial position of the dummy and the locations of the various belt parts are shown in Fig. 5.

SEAT - A hard seat pan without foam was used in these tests. This seat is modeled in MADYMO 3D by planes attached to the inertial space. The contact stiffnesses for the interaction between pelvis and seat were measured by Ford Motor Co. Additional planes

were defined in MADYMO for the contact between feet and floor (see Fig. 5). Stiffness data for this contact were also obtained from Ford Motor Co.

RESTRAINT SYSTEM - The anchor locations for the restraint system were exactly as in the tests. The inboard strap used in the test was not simulated. In the model the part of the shoulder belt leading from chest to inboard buckle was assumed to extend from the chest to the inboard floor tunnel-anchor point. Similarly, the inboard portion of the lap belt was assumed to extent from the pelvis to the same inboard anchor point. These simplifications of the belt geometry are expected to have a minor effect on the

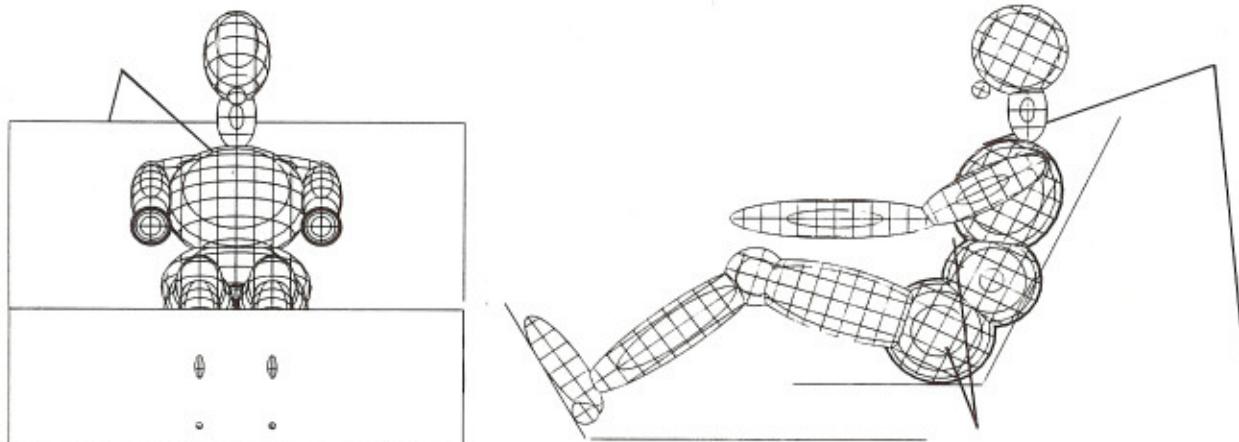


Fig. 5 Initial position.

model results since the inboard strap is also made of webbing material.

Five belt segments are used in the model to represent this restraint system: retractor part, shoulder belt, lower torso part, inboard lap and outboard lap. The retractor outlet function used in the model ('film spool effect') and belt properties were measured by Ford Motor Co. Lap belt stiffness data were corrected for compression of the dummy flesh based on static tests conducted by Ford Motor Co.

RESULTS

Mathematical simulations have been conducted with MADYMO 3D for the three impact severity levels discussed in the preceding section. Fig. 6 illustrates the resulting motion (gross kinematics) of the Hybrid III dummy model in the mid-severity test (27.5 G). These plots were obtained using the MADYMO Graphics Program. The predicted gross kinematics appeared to agree very well with the observations from the high speed films.

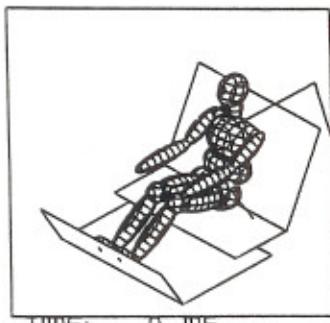
ACCELERATIONS - Fig. 7 shows a comparison between the model and experimental acceleration-time histories. Results are given for the resultant accelerations of the head, thorax (upper torso) and pelvis (lower torso) for the three impact severity levels. Model predictions for the head and thorax accelerations appear to be very realistic for all impact severity levels. Both the peak values and the shapes of the acceleration-time curves are close to the experimental findings. For the pelvis accelerations peak values predicted by the model appear to exceed the experimental peak values for all impact severity levels. The most likely explanation for this deviation is the compliance of the pelvis/abdomen flesh (submarining!) which was only partly taken into account in our simulations. Parameter variations of the lap belt stiffness showed indeed that improvements in the model response can be obtained easily by adjusting the lap belt stiffness.

BELT LOADS - Fig. 8 presents the belt force-time histories in the retractor belt part, the shoulder belt part and the outboard lap belt. Results are presented for all three impact severity levels. A quite good agreement between model and experimental results can be observed.

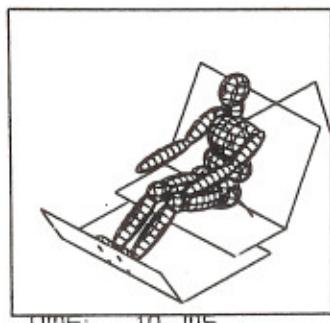
DISCUSSION

The 15-segment database developed in this study should be considered as a first attempt to develop a computer simulation model of the Hybrid III dummy for MADYMO 3D. In spite of a number of limitations in the present study the resulting model predictions appear to be very promising, particularly in

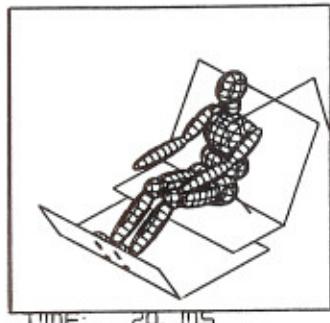
view of the fact that reliable model results have been obtained here for three different impact severity levels. In the past most validation studies presented in the literature concerned only one test condition. In such a case quite often acceptable model results can be obtained simply by tuning some of the model input parameters. However, using such a 'tuned' database under different test conditions sometimes results in rather unreliable and disappointing model predictions.

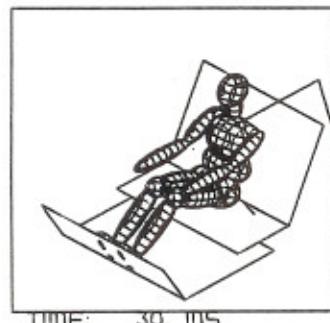

The database presented here is based on rough data obtained from Wright Patterson Airforce Base (WPAFB) in Dayton, Ohio. When the final WPAFB data becomes available parameters in the present database probably have to be adjusted slightly. Further it should be noted here that WPAFB measurements have been conducted on earlier Hybrid III dummy types. Recently some design changes have been introduced in the thorax and neck segments. Such changes will also influence the selected model input parameters. For these dummy segments additional measurements are therefore recommended.

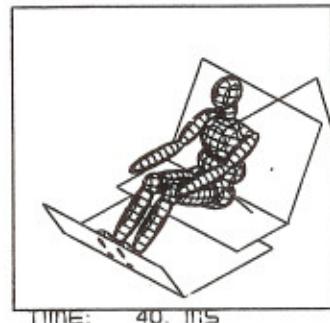
Another area of concern is the representation of the neck and lumbar spine in the model. Additional static and dynamic tests are needed, particularly for lateral and rearward impact directions. Further it should be realized that both the neck and lumbar spine are represented by 2 ball and socket joints in the model while in reality these (rubber) elements are much more complicated. Flexible model elements should be developed to simulate this type of structures.

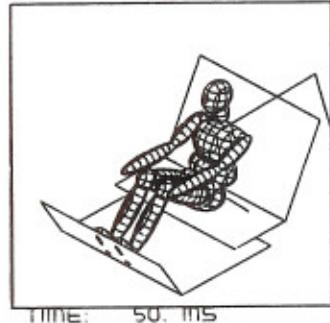

The presented model consists of 15 segments. Further model improvements can be obtained if separate shoulder segments are included in order to represent the shoulder assembly motion. Also one or more separate sternum elements, as introduced by Prasad (4) in the MADYMO 2D Hybrid III database, would improve the model. Due to such database extensions the shoulder belt-thorax interaction would become more realistic. In addition separate sternum elements will allow the determination of the chest deflection which is one of the most important Hybrid III injury parameters.

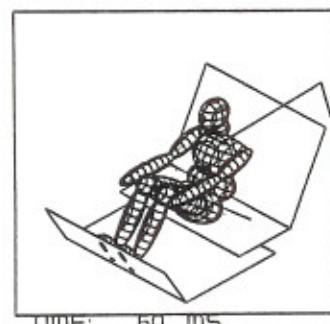
In the lower torso area a further model improvement could be realized by simulating sliding of the lap belt relative to the pelvis and the corresponding submaring response. MADYMO allows this type of simulations by defining a separate segment while this segment can slide and penetrate relative to the lower and middle torso using adequate contact surfaces.

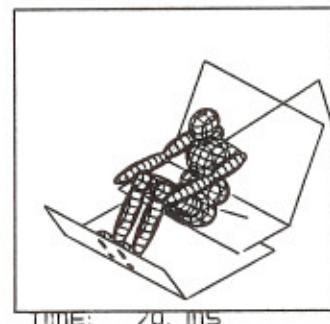

In the present validation study the complete dummy response predicted by the model has been compared with test results. Additional validation studies are proposed here to evaluate the response of specific dummy components, for instance in well-controlled calibration (impactor) tests.

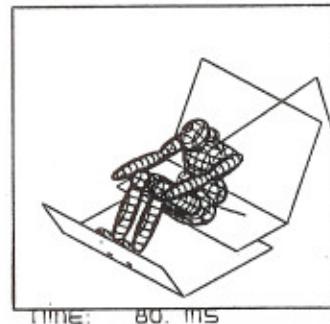

TIME: 0. ms

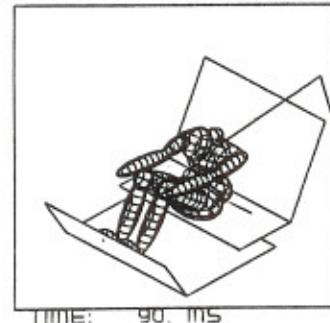

TIME: 10. ms

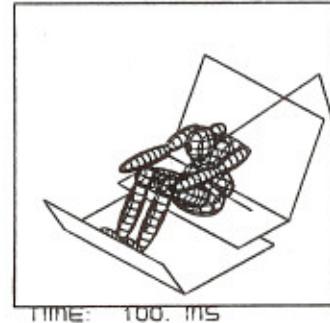

TIME: 20. ms

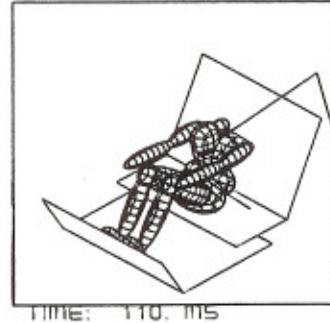

TIME: 30. ms

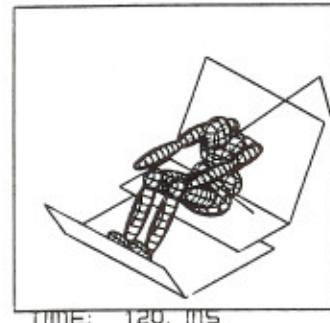

TIME: 40. ms

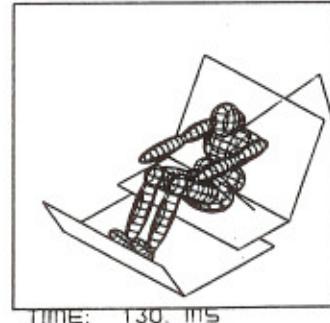

TIME: 50. ms

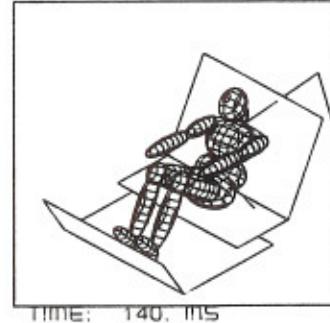

TIME: 60. ms


TIME: 70. ms


TIME: 80. ms


TIME: 90. ms


TIME: 100. ms


TIME: 110. ms

TIME: 120. ms

TIME: 130. ms

TIME: 140. ms

Fig. 6 Resulting motion (gross kinematics) of the Hybrid III dummy model in the mid-severity test (27.5 G).

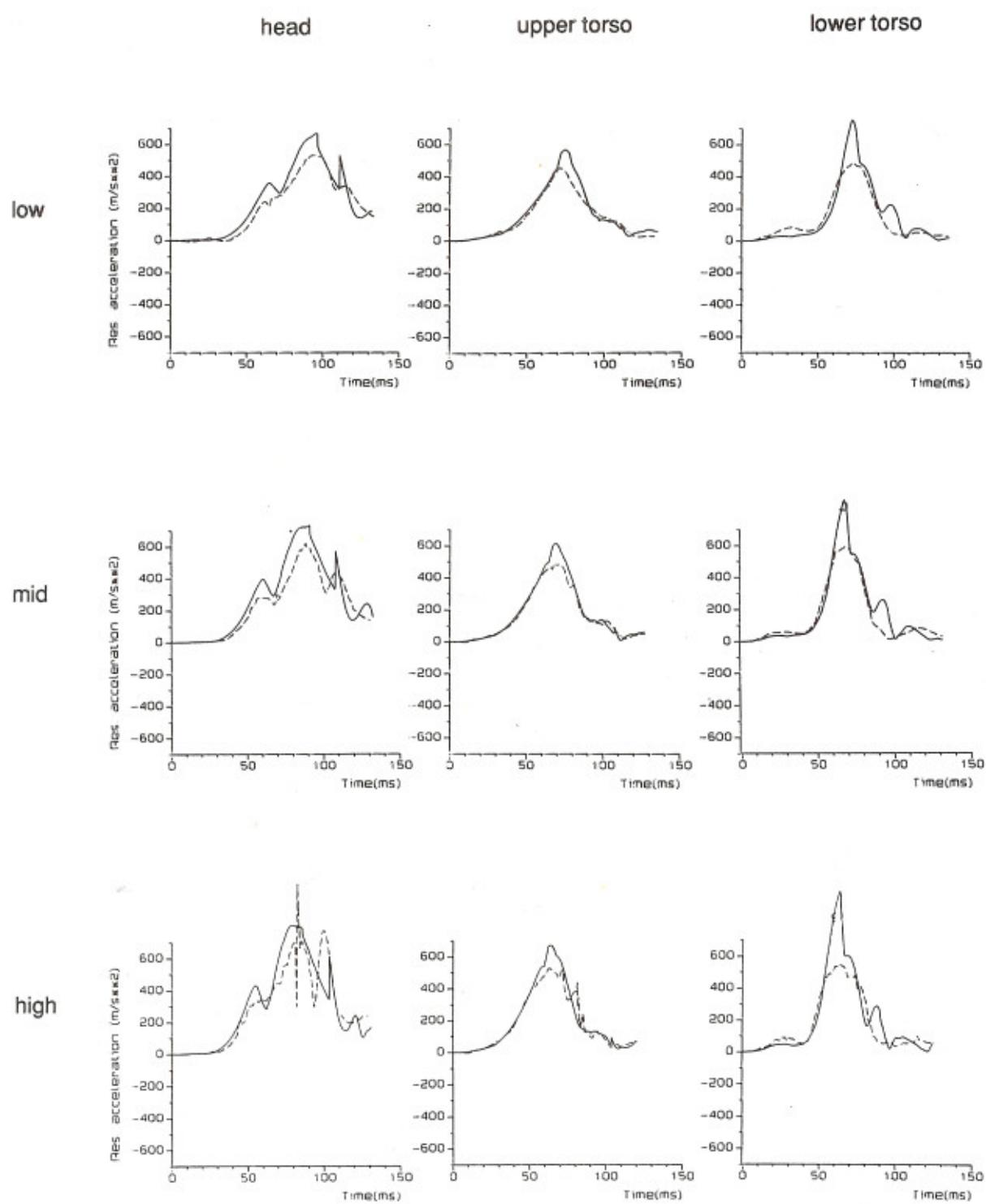


Fig. 7 Model and experimental acceleration-time histories for the three impact severity levels.

— model
- - - test

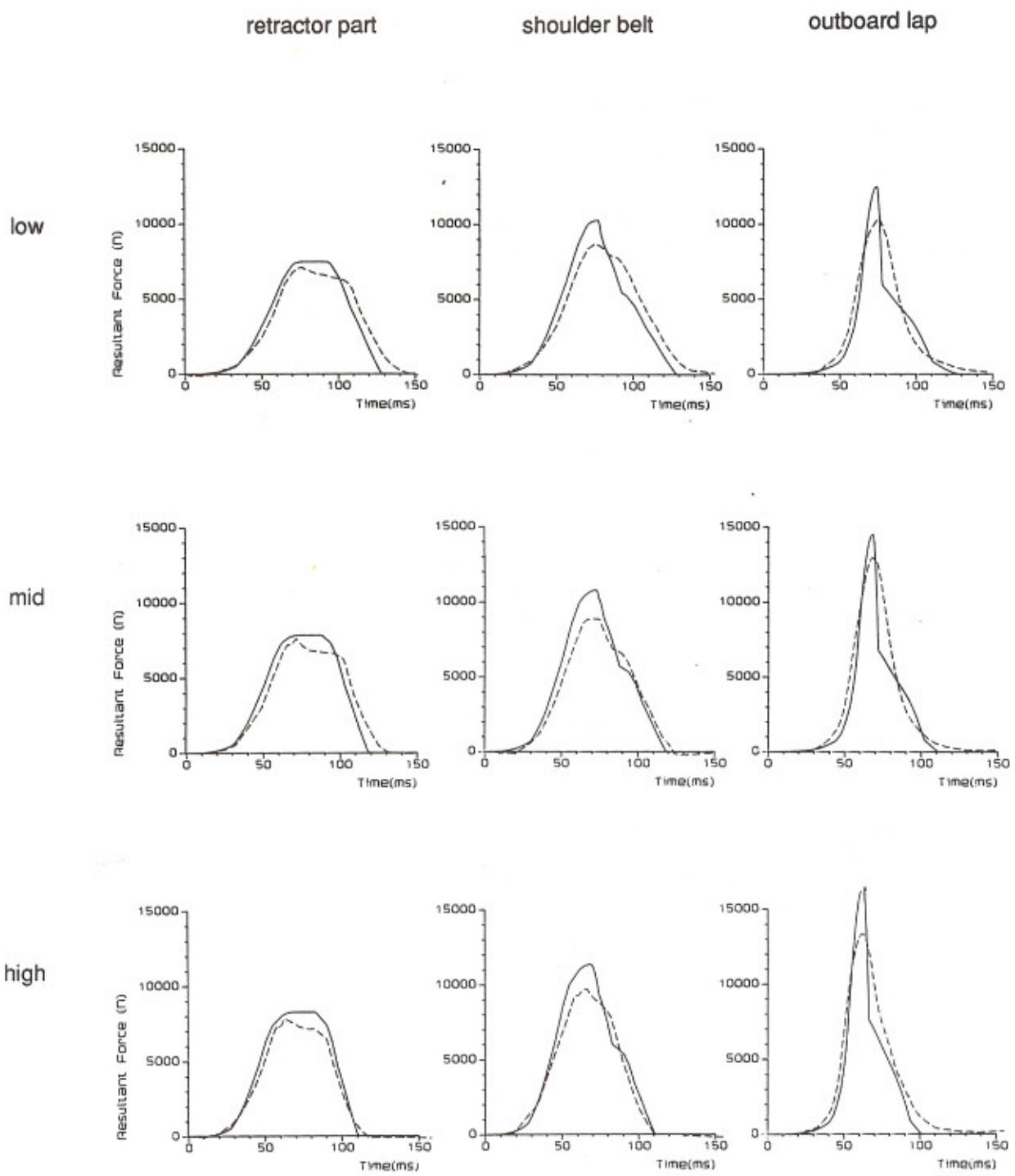


Fig. 8 Model and experimental belt load-time histories for the three impact severity levels.

— model
- - - - test

CONCLUSIONS

- A 15-segment MADYMO 3D-model has been developed based on data obtained from Wright-Patterson Air Force Base.
- Model predictions have been compared with well controlled sled tests under various impact severity levels conducted by Ford Motor Co.
- Model results show good agreement with experimental results.
- Areas for future model improvements have been identified and additional Hybrid III measurements are proposed.
- In addition to full scale or sled test also local impact tests on certain dummy parts should be carried out for model validation purposes.

REFERENCES

1. J. Wismans, T. Hoen en L. Wittebrood (1985): "Status of the MADYMO Crash Victim Simulation Package 1985". Tenth Int. Conf. on Experimental Safety Vehicles, Oxford, England.
2. I. Kaleps (1988): "Hybrid III Geometrical and Inertial Properties" SAE 880638, 1988 SAE Int. Congress & Exposition, Detroit.
3. P. Prasad (1988): "Sled Testing of Hybrid III" SAE 880637, 1988 SAE Int. Congress & Exposition, Detroit.
4. P. Prasad (1988): "MADYMO 2D Simulation of Sled Tests", SAE 880640, 1988 SAE Int. Congress & Exposition, Detroit.
5. L. Obergefell, I. Kaleps and S. Steele (1988): "Part 572 and Hybrid III Dummy Comparison Sled Test Simulation", SAE 880639, 1988 SAE Int. Congress & Exposition, Detroit.
6. T. Khatua (1988): "CVS Simulation of Sled Tests" SAE 880647, 1988 SAE Int. Congress & Exposition, Detroit.
7. "MADYMO User's Manual 3D". Report TNO Road Vehicles Research Institute (1986).
8. I. Kaleps, R.P. White, R. Beecher, J. Whitestone and L.A. Obergefell (1988): "Measurement of Hybrid III Dummy Properties and Analytical Simulation Data Base Development". Report Wright-Patterson Air Force Base, Ohio. (to be published)

APPENDIX A:

MADYMO reprint of input dataset for Hybrid III sled test simulation (mid severity impact level)

```

FILE : REPRINT

| MADYMO 3 D V E R S I O N 4 . 1
| Release date : 870922
| (c) 1987 TNO Road Vehicles Research Institute
| P.O. Box 237, 2600 AE Delft, The Netherlands
| Licensed to : TNO-IW
| Host ID : 

| MADYMO 3 D : I N P U T D E S C R I P T I O N
| RUN NR. : 1
| NAME : HYBRID III SITTING MID SEVERITY
| DATE : FEBRUARI 1988

***** GENERAL MODEL PARAMETERS *****

STARTING TIME = 0.0000
END TIME = 0.1500
TIME STEP RESTART DATA = 0.1000
RESTART TIME = 0.0000

5TH ORDER RUNGE-KUTTA MERNON WITH VARIABLE TIME STEP :
INITIAL TIME STEP = 0.000050
TOLERANCE = 0.000100

LINEAR RAMP FUNCTION FOR JOINTS : RAMP1 = 0.000 RAMP2 = 0.500
LINEAR RAMP FUNCTION FOR CONTACTS : RAMP1 = 0.010 RAMP2 = 4.000

***** INERTIAL SPACE : RIGID SEAT *****

** PLANES **

PLA | EL | COORDINATES EDGES [M] | ELASTIC CHARAC. |
-----|-----|-----|-----|-----|-----|-----|
1 | 0 | X1 Y1 Z1 X2 Y2 Z2 X3 Y3 Z3 | LO UNL HYS |
2 | 0 | 0.770 0.500 -0.254 0.770 -0.500 -0.254 0.952 -0.500 0.065 | 1 3 1500000.0 | FOOT PLANE
3 | 0 | 0.024 0.500 -0.254 0.024 -0.500 -0.254 0.770 -0.500 -0.254 | 1 3 1500000.0 | FLOOR PLANE
4 | 0 | -0.096 0.500 -0.125 -0.096 -0.500 -0.125 0.327 -0.500 -0.125 | 2 4 825000.0 | SEATCUSH
5 | 0 | -0.393 0.500 0.500 -0.393 -0.500 0.500 -0.096 -0.500 -0.125 | 2 4 825000.0 | SEATBACK

** FORCE-PENETRATION CHARACTERISTICS PLANES **

FORCE [N] AS FUNCTION OF PENETRATION [M]

NR 1 | NR 2 | NR 3 | NR 4 |
-----|-----|-----|-----|
0.000 0.0 | 0.000 0.0 | -0.100 0.0 | 0.000 0.0 |
0.050 10000.0 | 0.008 490.0 | 0.000 0.0 | 0.013 135.0 |
0.013 1113.0 | 0.050 8000.0 | 0.023 450.0 |
0.018 2225.0 | 0.028 900.0 |
0.020 4005.0 | | | |
```

***** SYSTEM 1 : SITTING HYBRID III *****

** SYSTEM CONFIGURATION **

ELEMENT SEQUENCE IN BRANCH 1 = 5 4 3 2 1
ELEMENT SEQUENCE IN BRANCH 2 = 7 6 3 2 1
ELEMENT SEQUENCE IN BRANCH 3 = 9 8 3 2 1
ELEMENT SEQUENCE IN BRANCH 4 = 12 11 10 1
ELEMENT SEQUENCE IN BRANCH 5 = 15 14 13 1

** GEOMETRICAL DATA EXPRESSED IN ELEMENT COORDINATE SYSTEM **

EL | REFERENCE JOINT [M] | CENTER OF GRAVITY [M] |
-----|-----|-----|-----|-----|-----|
1 | X Y Z | X Y Z |
2 | 0.000 0.000 0.000 | -0.001 0.000 0.041 | LOWER TORSO
3 | -0.075 0.000 0.090 | 0.025 0.000 0.065 | SPINE
4 | 0.006 0.000 0.130 | 0.056 0.000 0.125 | UPPER TORSO
5 | 0.104 0.000 0.285 | 0.027 0.000 0.043 | NECK
6 | 0.000 0.000 0.133 | 0.014 0.000 0.050 | HEAD
7 | 0.061 0.188 0.205 | 0.000 0.000 -0.138 | UPPER ARM LEFT
8 | 0.000 0.000 -0.263 | -0.002 0.000 -0.146 | LOWER ARM LEFT
9 | 0.061 -0.188 0.205 | 0.000 0.000 -0.138 | UPPER ARM RIGHT
10 | 0.000 0.000 -0.263 | -0.002 0.000 -0.146 | LOWER ARM RIGHT
11 | 0.080 0.000 0.000 | 0.253 0.000 0.000 | UPPER LEG LEFT
12 | 0.420 0.000 0.000 | 0.005 0.000 -0.171 | LOWER LEG LEFT
13 | 0.000 -0.080 0.000 | 0.045 0.000 -0.032 | FOOT LEFT
14 | 0.420 0.000 0.000 | 0.005 0.000 0.000 | UPPER LEG RIGHT
15 | 0.000 0.000 -0.414 | 0.045 0.000 -0.032 | LOWER LEG RIGHT
16 | 0.000 0.000 0.000 | 0.045 0.000 0.000 | FOOT RIGHT

** MASSES AND PRINCIPAL MOMENTS OF INERTIA **

EL	MASS (KG)	MOMENT OF INERTIA (KGMM ²)			NAME
		IXX	IYY	IZZ	
1	2.017E+01	2.393E-01	8.230E-02	1.647E-01	LOWER TORSO
2	2.667E+00	1.000E-02	1.000E-02	1.000E-02	SPINE
3	1.609E+01	2.951E-01	2.319E-01	1.959E-01	UPPER TORSO
4	1.480E+00	1.000E-02	1.000E-02	1.000E-02	NECK
5	4.535E+00	1.590E-02	2.400E-02	2.210E-02	HEAD
6	2.085E+00	1.160E-02	1.130E-02	1.000E-02	UPPER ARM LEFT
7	2.313E+00	3.390E-02	3.370E-02	1.000E-02	LOWER ARM LEFT
8	2.085E+00	1.160E-02	1.130E-02	1.000E-02	UPPER ARM RIGHT
9	2.313E+00	3.390E-02	3.370E-02	1.000E-02	LOWER ARM RIGHT
10	6.220E+00	6.880E-02	6.740E-02	1.210E-02	UPPER LEG LEFT
11	3.283E+00	7.580E-02	7.620E-02	1.000E-02	LOWER LEG LEFT
12	1.250E+00	1.000E-02	1.000E-02	1.000E-02	FOOT LEFT
13	6.220E+00	6.880E-02	6.740E-02	1.210E-02	UPPER LEG RIGHT
14	3.283E+00	7.580E-02	7.620E-02	1.000E-02	LOWER LEG RIGHT
15	1.250E+00	1.000E-02	1.000E-02	1.000E-02	FOOT RIGHT

ORIENTATION OF MOMENTS OF INERTIA COORDINATE SYSTEM RELATIVE TO ELEMENT COORDINATE SYSTEM

EL	COSINE MATRIX	0.8943	0.0002	0.4475	-0.0001	-1.0000	0.0006	0.4475	-0.0006	-0.8943
----	---------------	--------	--------	--------	---------	---------	--------	--------	---------	---------

** CARDAN JOINTS **

NO	IDENTIFIER									
1	LOWER TORSO	-	UPPER LEG LEFT							
2	LOWER TORSO	-	UPPER LEG RIGHT							
3	UPPER LEG LEFT	-	LOWER LEG LEFT							
4	UPPER LEG RIGHT	-	LOWER LEG RIGHT							
5	LOWER LEG LEFT	-	FOOT LEFT							
6	LOWER LEG RIGHT	-	FOOT RIGHT							
7	UPPER TORSO	-	UPPER ARM LEFT							
8	UPPER TORSO	-	UPPER ARM RIGHT							
9	UPPER ARM LEFT	-	LOWER ARM LEFT							
10	UPPER ARM RIGHT	-	LOWER ARM RIGHT							

NO	ELASTIC CHAR. PHI			ELASTIC CHAR. THETA			ELASTIC CHAR. PSI			DAMPING (NMS/RAD)			FRICTION (NM)				
	EL1	EL2	EL3	LO	UNL	HYS	XEL	LO	UNL	HYS	XEL	PHI	THETA	PSI	PHI	THETA	PSI
1	1	1	1	0	0	0.000	2	0	0	0.000	3	0	0	0.000	6.00	6.00	5.00
2	1	13	13	0	0	0.000	4	0	0	0.000	3	0	0	0.000	6.00	6.00	5.00
3	10	11	5	0	0	0.000	6	0	0	0.000	6	0	0	0.000	5.00	7.50	4.00
4	13	14	5	0	0	0.000	6	0	0	0.000	6	0	0	0.000	5.00	7.50	4.00
5	11	12	7	0	0	0.000	6	0	0	0.000	6	0	0	0.000	1.00	1.00	1.00
6	14	15	7	0	0	0.000	6	0	0	0.000	6	0	0	0.000	1.00	1.00	1.00
7	3	6	8	0	0	0.000	6	0	0	0.000	9	0	0	0.000	2.00	4.00	4.00
8	3	8	8	0	0	0.000	6	0	0	0.000	10	0	0	0.000	2.00	4.00	4.00
9	6	7	11	0	0	0.000	6	0	0	0.000	12	0	0	0.000	2.00	4.00	2.00
10	8	9	11	0	0	0.000	6	0	0	0.000	12	0	0	0.000	2.00	4.00	2.00

ORIENTATION OF CARDAN JOINT COORDINATE SYSTEM RELATIVE TO ELEMENT COORDINATE SYSTEM
(JOINT DENOTED BY ITS HIGHER NUMBERED ELEMENT ELL, ELEMENT DENOTED BY ELEM)

ELJ	ELEM	ROTATIONS															
10	1	ROTATIONS	3.	1.5708	0.	0.0000	0.	0.0000	0.	0.0000	0.	0.0000	0.	0.0000	0.	0.0000	0.
10	10	ROTATIONS	3.	1.5708	0.	0.0000	0.	0.0000	0.	0.0000	0.	0.0000	0.	0.0000	0.	0.0000	0.
13	1	ROTATIONS	3.	1.5708	0.	0.0000	0.	0.0000	0.	0.0000	0.	0.0000	0.	0.0000	0.	0.0000	0.
13	13	ROTATIONS	3.	1.5708	0.	0.0000	0.	0.0000	0.	0.0000	0.	0.0000	0.	0.0000	0.	0.0000	0.
11	10	ROTATIONS	3.	1.5708	0.	0.0000	0.	0.0000	0.	0.0000	0.	0.0000	0.	0.0000	0.	0.0000	0.
11	11	ROTATIONS	3.	1.5708	0.	0.0000	0.	0.0000	0.	0.0000	0.	0.0000	0.	0.0000	0.	0.0000	0.
14	13	ROTATIONS	3.	1.5708	0.	0.0000	0.	0.0000	0.	0.0000	0.	0.0000	0.	0.0000	0.	0.0000	0.
14	14	ROTATIONS	3.	1.5708	0.	0.0000	0.	0.0000	0.	0.0000	0.	0.0000	0.	0.0000	0.	0.0000	0.
12	11	ROTATIONS	3.	1.5708	0.	0.0000	0.	0.0000	0.	0.0000	0.	0.0000	0.	0.0000	0.	0.0000	0.
12	12	ROTATIONS	3.	1.5708	0.	0.0000	0.	0.0000	0.	0.0000	0.	0.0000	0.	0.0000	0.	0.0000	0.
15	14	ROTATIONS	3.	1.5708	0.	0.0000	0.	0.0000	0.	0.0000	0.	0.0000	0.	0.0000	0.	0.0000	0.
6	3	ROTATIONS	1.	1.5708	2.	1.5708	0.	0.0000	0.	0.0000	0.	0.0000	0.	0.0000	0.	0.0000	0.
6	6	ROTATIONS	1.	1.5708	2.	1.5708	0.	0.0000	0.	0.0000	0.	0.0000	0.	0.0000	0.	0.0000	0.
8	3	ROTATIONS	1.	1.5708	2.	1.5708	0.	0.0000	0.	0.0000	0.	0.0000	0.	0.0000	0.	0.0000	0.
8	8	ROTATIONS	1.	1.5708	2.	1.5708	0.	0.0000	0.	0.0000	0.	0.0000	0.	0.0000	0.	0.0000	0.
7	6	ROTATIONS	2.	-1.5708	1.	-1.5708	0.	0.0000	0.	0.0000	0.	0.0000	0.	0.0000	0.	0.0000	0.
7	7	ROTATIONS	2.	-1.5708	1.	-1.5708	0.	0.0000	0.	0.0000	0.	0.0000	0.	0.0000	0.	0.0000	0.
9	8	ROTATIONS	2.	-1.5708	1.	-1.5708	0.	0.0000	0.	0.0000	0.	0.0000	0.	0.0000	0.	0.0000	0.
9	9	ROTATIONS	2.	-1.5708	1.	-1.5708	0.	0.0000	0.	0.0000	0.	0.0000	0.	0.0000	0.	0.0000	0.

** TORQUE CHARACTERISTICS CARDAN JOINTS **

TORQUE [NM] AS FUNCTION OF ANGLE [RAD] :

NR 1	NR 2	NR 3	NR 4	NR 5	NR 6
-1.600	-552.0	-1.300	-587.0	-2.000	-500.0
-0.600	-52.0	-0.800	-87.0	-1.000	0.0
0.000	0.0	0.000	0.0	1.000	2.000
0.900	68.0	0.650	46.0	2.000	500.0
1.000	96.0	1.650	546.0	1.800	587.0
2.000	596.0				0.710

TORQUE (NM) AS FUNCTION OF ANGLE (RAD) :

NR 7	NR 8	NR 9	NR 10	NR 11	NR 12
-1.900	-537.0	-3.500	-500.0	0.000	0.0
-0.900	-37.0	-2.500	0.0	2.500	26.0
-0.800	0.0	0.000	0.0	3.500	526.0
0.000	0.0	1.300	0.0		
0.700	0.0	2.300	500.0		
0.800	41.0				
1.800	541.0				

** FLEXION-TORSION JOINTS **

NO | IDENTIFIER

1	LOWER TORSO	- SPINE
2	SPINE	- UPPER TORSO
3	UPPER TORSO	- NECK
4	NECK	- HEAD

NO	ELI	ELJ	ELASTIC	CHAR.	FLEXION	ELASTIC	CHAR.	TORSION	DAMPING	FRICITION	MFAC
	LO	ULN	HYS	XEL		LO	ULN	HYS	XEL	[NM]	
1	1	2	1	0	0.000	2	0	0	0.000	30.50	0.00
2	2	3	1	0	0.000	2	0	0	0.000	30.50	0.00
3	3	4	3	0	0.000	4	0	0	0.000	2.30	2.00
4	4	5	3	0	0.000	4	0	0	0.000	2.30	2.00

ORIENTATION OF FLEXION-TORSION JOINT COORDINATE SYSTEM RELATIVE TO ELEMENT COORDINATE SYSTEM
(JOINT DENOTED BY ITS HIGHER NUMBERED ELEMENT ELJ, ELEMENT DENOTED BY ELEM)

ELJ	ELEM	ROTATIONS	2.	0.4768	0.	0.0000	0.	0.0000
4	3	ROTATIONS	2.	0.4768	0.	0.0000	0.	0.0000

** TORQUE CHARACTERISTICS FLEXION-TORSION JOINTS **

TORQUE [NM] AS FUNCTION OF ANGLE [RAD] OR FUNCTION FOR FACTOR :

NR	1	NR	2	NR	3	NR	4
0.000	0.0	-1.000	-126.0	0.000	0.0	-1.000	-103.0
1.000	2978.0	-0.175	-40.0	0.021	4.7	-0.175	-28.0
		0.175	40.0	0.390	30.0	0.175	28.0
		1.000	126.0	0.500	40.6	1.000	103.0
				0.590	53.7		
				0.660	71.1		
				0.680	77.7		
				0.710	84.8		
				1.710	538.0		

** ELLIPSOIDS **

NO	EL	SEMI-AXES [M]	CENTER [M]	DEG	ELASTIC	CHARAC.		
		EX	EY	EZ	LO	UNL	HYS	
1	1	0.125	0.183	0.122	0.000	0.000	0.000	0. LOWER TORSO
2	2	0.110	0.165	0.110	0.024	0.000	0.066	0. ABDOMEN
3	3	0.120	0.158	0.138	0.075	0.000	0.124	0. UPPER TORSO
4	4	0.050	0.220	0.050	0.061	0.000	0.205	0. SHOULDERS
5	5	0.043	0.043	0.076	0.000	0.000	0.044	0. NECK
6	6	0.105	0.073	0.105	0.014	0.000	0.050	0. HEAD
7	7	0.045	0.044	0.153	0.000	0.000	-0.113	0. UPPER ARM LEFT
8	8	0.045	0.045	0.230	0.000	0.000	-0.188	0. LOWER ARM LEFT
9	9	0.048	0.044	0.153	0.000	0.000	-0.113	0. UPPER ARM RIGHT
10	10	0.045	0.045	0.230	0.000	0.000	-0.188	0. LOWER ARM RIGHT
11	11	0.234	0.073	0.080	0.208	0.000	0.000	0. UPPER LEG LEFT
12	12	0.068	0.052	0.068	0.620	0.000	0.000	0. KNEE LEFT
13	13	0.055	0.052	0.248	0.005	0.000	-0.210	0. LOWER LEG LEFT
14	14	0.137	0.040	0.040	0.080	0.000	-0.045	0. FOOT LEFT
15	15	0.234	0.078	0.080	0.208	0.000	0.000	0. UPPER LEG RIGHT
16	16	0.068	0.052	0.068	0.420	0.000	0.000	0. KNEE RIGHT
17	17	0.055	0.052	0.248	0.005	0.000	-0.210	0. LOWER LEG RIGHT
18	18	0.137	0.010	0.040	0.080	0.000	-0.046	0. FOOT RIGHT
19	19	0.020	0.020	0.020	0.100	0.000	-0.041	0. CHIN
20	20	0.030	0.030	0.030	-0.035	0.000	-0.070	0. HEEL LEFT
21	21	0.030	0.030	0.030	-0.035	0.000	-0.070	0. HEEL RIGHT

** FORCE-PENETRATION CHARACTERISTICS ELLIPSOIDS **

FORCE [N] AS FUNCTION OF PENETRATION [M]

NR	1
0.000	0.0
0.051	2250.0

** INITIAL POSITION [M] AND LINEAR VELOCITY [M/S] OF TREE STRUCTURE ORIGIN IN INERTIAL COORDINATE SYSTEM **

X = 0.0000 Y = 0.0000 Z = 0.0000
VX = 0.0000 VY = 0.0000 VZ = 0.0000

** INITIAL ORIENTATION OF ELEMENT COORDINATE SYSTEM RELATIVE TO INERTIAL OR PRECEDING ELEMENT COORDINATE SYSTEM **

EL	INERTIAL	ROTATIONS	2.	-0.4538	0.	0.0000	0.	0.0000
1	INERTIAL	ROTATIONS	2.	-0.4538	0.	0.0000	0.	0.0000
2	INERTIAL	ROTATIONS	2.	-0.4538	0.	0.0000	0.	0.0000
3	INERTIAL	ROTATIONS	2.	0.0230	0.	0.0000	0.	0.0000
4	INERTIAL	ROTATIONS	2.	0.0230	0.	0.0000	0.	0.0000
5	INERTIAL	ROTATIONS	2.	-1.1000	0.	0.0000	0.	0.0000
6	INERTIAL	ROTATIONS	2.	-1.5708	0.	0.0000	0.	0.0000
7	INERTIAL	ROTATIONS	2.	-1.5708	0.	0.0000	0.	0.0000
8	INERTIAL	ROTATIONS	2.	-1.1000	0.	0.0000	0.	0.0000
9	INERTIAL	ROTATIONS	2.	-1.5708	0.	0.0000	0.	0.0000
10	INERTIAL	ROTATIONS	2.	-0.2990	0.	0.0000	0.	0.0000
11	INERTIAL	ROTATIONS	2.	-0.9400	0.	0.0000	0.	0.0000
12	INERTIAL	ROTATIONS	2.	-0.9465	0.	0.0000	0.	0.0000
13	INERTIAL	ROTATIONS	2.	-0.2990	0.	0.0000	0.	0.0000
14	INERTIAL	ROTATIONS	2.	-0.9400	0.	0.0000	0.	0.0000
15	INERTIAL	ROTATIONS	2.	-0.9465	0.	0.0000	0.	0.0000

FORCE INTERACTIONS

** BELT SYSTEM 1 **

BELT	SYS1	EL1	CONNECTION 1	SYS2	EL2	CONNECTION 2
1	-1	0	-0.665 0.406 -0.039	-1	0	-0.599 0.252 0.620
2	-1	0	-0.599 0.252 0.620	1	3	0.175 0.055 0.212
3	1	3	0.135 -0.075 -0.013	-1	0	-0.086 -0.229 -0.229

BELT	ELASTIC	CHARACTERISTIC	FRIC	SLACK	ADD LEN	COR
	LO	ULN	HYS	XEL	[M]	
1	1	3	1170000.	0.000	0.000	-0.167
2	2	3	1170000.	0.18	0.000	0.057
3	2	3	1170000.	0.16	0.000	1.0

INITIAL BELT LENGTHS = 0.513 0.630 0.473

** RETRACTOR PARAMETERS **

SPLINE PARAMETER = 1
LOCK TIME RETRACTOR = 0.001
LOCK VELOCITY RETRACTOR = 0.00

** RETRACTOR CHARACTERISTIC **

FORCE [N] AS FUNCTION OF BELT OUTLET [M] :

NR	1
-1.000	0.0
0.000	0.0
0.025	2000.0
0.051	4561.0
0.064	6341.0
0.076	7342.0
0.089	7676.0

** FORCE-RELATIVE ELONGATION CHARACTERISTICS BELT ELEMENTS **

FORCE [N] AS FUNCTION OF RELATIVE ELONGATION [M] :

NR	1	NR	2	NR	3
-0.100	0.0	-0.100	0.0	0.000	0.0
0.000	0.0	0.000	0.0	0.017	0.0
0.075	11200.0	0.020	670.5	0.029	2000.0
		0.095	11792.5	0.042	3500.0
				0.054	5000.0

** BELT SYSTEM 2 **

BELT	SYS1	EL1	CONNECTION 1			SYS2	EL2	CONNECTION 2		
			X1	Y1	Z1			X2	Y2	Z2
1	-1	0	-0.086	-0.229	-0.229	1	1	0.050	-0.140	0.050
2	1	1	0.050	0.170	0.050	-1	0	-0.086	0.305	-0.196

BELT	ELASTIC CHARACTERISTIC			FRIC	SLACK	ADD LEN	COR	
	LO	UNL	HYS					
1	1	2	1170000.	0.000	0.00	0.000	0.101	1.3
2	1	2	1170000.	0.000	0.00	0.000	0.101	1.3

INITIAL BELT LENGTHS = 0.429 0.416

** FORCE-RELATIVE ELONGATION CHARACTERISTICS BELT ELEMENTS **

FORCE [N] AS FUNCTION OF RELATIVE ELONGATION [M] :

NR	1	NR	2
0.000	0.0	0.000	0.0
0.077	605.0	0.195	0.0
0.102	970.0	0.150	675.0
0.128	1660.0	0.230	4500.0
0.154	2465.0		
0.179	3805.0		
0.192	4695.0		
0.200	5563.0		
0.250	11125.0		

** ACCELERATION FIELD **

ALL SYSTEMS :

FUNCTION
AX
AY
AZ

** TIME-ACCELERATION CHARACTERISTICS **

ACCELERATION [M/S**2] AS FUNCTION OF TIME [S] :

NR	1	NR	2
0.000	0.0	0.000	-9.8
0.004	44.2	0.100	-9.8
0.006	29.4		
0.010	78.5		
0.013	117.7		
0.018	137.3		
0.023	166.8		
0.031	235.4		
0.034	235.4		
0.036	255.1		
0.040	260.0		
0.042	260.0		
0.045	269.8		
0.047	260.0		
0.049	260.0		
0.052	255.1		
0.054	255.1		
0.080	122.6		
0.090	49.0		
0.095	-9.8		
0.097	-24.5		
0.103	14.7		
0.109	-14.7		
0.115	-9.8		
0.120	-4.9		
0.125	-9.8		
0.130	-2.5		
0.141	-19.6		
0.149	-2.5		
0.152	-14.7		

** PLANE - ELLIPSOID CONTACT MODEL **

NO	SY	PL	SY	EL	ELASTIC CHARACTERISTIC				DAMP [NS/M]	FRIC	FIN [M]	COR	
					CHO	LO	UNL	HYS					
1	-1	3	1	1	2	0	0	0.	0.000	770.00	0.62	0.050	0 SEATCUSH - LOWER TORSO
2	-1	4	1	1	2	0	0	0.	0.000	0.00	0.62	0.050	0 SEATBACK - UPPER TORSO
3	-1	4	1	1	2	0	0	0.	0.000	0.00	0.62	0.050	0 SEATBACK - LOWER TORSO
4	-1	1	1	14	2	0	0	0.	0.000	0.00	1.00	0.050	0 FOOT PLANE - FOOT LEFT
5	-1	2	1	14	2	0	0	0.	0.000	0.00	1.00	0.050	0 FLOOR PLANE - FOOT LEFT
6	-1	1	1	18	2	0	0	0.	0.000	0.00	1.00	0.050	0 FOOT PLANE - FOOT RIGHT
7	-1	2	1	18	2	0	0	0.	0.000	0.00	1.00	0.050	0 FLOOR PLANE - FOOT RIGHT
8	-1	1	1	20	2	0	0	0.	0.000	0.00	1.00	0.050	0 FOOT PLANE - HEEL LEFT
9	-1	1	1	21	2	0	0	0.	0.000	0.00	1.00	0.050	0 FOOT PLANE - HEEL RIGHT

** ELLIPSOID - ELLIPSOID CONTACT MODEL **

NO	SY	EL1	SY	EL2	ELASTIC CHARACTERISTIC				DAMP [NS/M]	FRIC	FIN [M]	COR
					CHO	LO	UNL	HYS				
1	1	19	1	3	2	0	0	0.	0.000	0.00	0.50	0 CHIN - UPPER TORSO

OUTPUT CONTROL PARAMETERS

OUTPUT DEBUG FILE IS NOT STORED
KINEMATIC OUTPUT IS STORED EACH 0.0100 SEC

** COORDINATES OF POINTS FOR WHICH LINEAR ACCELERATIONS WILL BE CALCULATED **

SYS	EL	COORDINATES [M]			CORR. FUNCTIONS	RELATIVE	IDENTIFIER	
		X	Y	Z				
1	1	-0.044	0.000	0.005	1	0	1	LOCAL LOWER TORSO
1	3	0.039	0.000	0.122	1	0	1	LOCAL UPPER TORSO
1	5	0.014	0.000	0.050	1	0	1	LOCAL HEAD

** DATA FOR FORCE MODEL OUTPUT **

FOR	NR	IDENTIFIER
BELT	1	RETRACTOR PART
BELT	2	SHOULDER BELT
BELT	5	OUTBOARD LAP

CALCULATED INITIAL PENETRATIONS

** PLANE - ELLIPSOID CONTACT MODEL **

NO	INITIAL PEN. [M]	SEATCUSH	LOWER TORSO
1	0.0000	SEATCUSH	LOWER TORSO
2	0.0000	SEATBACK	UPPER TORSO
3	0.0000	SEATBACK	LOWER TORSO
4	0.0006	FOOT PLANE	FOOT LEFT
5	0.0000	FLOOR PLANE	FOOT LEFT
6	0.0006	FOOT PLANE	FOOT RIGHT
7	0.0000	FLOOR PLANE	FOOT RIGHT
8	0.0000	FOOT PLANE	HEEL LEFT
9	0.0000	FOOT PLANE	HEEL RIGHT

** ELLIPSOID - ELLIPSOID CONTACT MODEL **

NO	INITIAL PEN. [M]	CHIN	UPPER TORSO
1	0.0000	CHIN	UPPER TORSO

Positions and opinions advanced in this paper are those of the author(s) and not necessarily those of SAE. The author is solely responsible for the content of the paper. A process is available by which discussions will be printed with the paper if it is published in SAE Transactions. For permission to publish this paper in full or in part, contact the SAE Publications Division.

Persons wishing to submit papers to be considered for presentation or publication through SAE should send the manuscript or a 300 word abstract of a proposed manuscript to: Secretary, Engineering Activity Board, SAE.

Printed in U.S.A.