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Abstract — A three-dimensional analytical model of the knee-joint is presented, taking into account the
geometry of the joint surfaces as well as the geometry and material properties of the ligaments and capsule.
The position of a large number of points on the joint surfaces is measured and the geometry of these surfaces
is then approximated by polynomials in space. The ligaments and capsule are represented by a number of
non-linear springs, with material properties selected from the literature. For a given three-dimensional
loading (forces as well as moments) at various fexion-extension angles, the location of contact points,
magnitude and direction of contact forces, magnitude of ligament elongation and ligament forces can be
calculated.

In the results presented in this paper special attention is given to the anterior—posterior laxity of a joint. A
sensitivity study was undertaken to evaluate the model response due to some of the model parameters and 1o
eain a betler understanding of the function of the elements in the model. It is concluded that the predictions of

the model agree well with experiments described in the literature

INTRODUCTION

Mathematical models offer expanding possibilities for
the analysis of complicated biological structures. This
paper presents a model for the analysis of the motions
and forces between two body segments. The human
knee joint has been selected for this study as it has a
complicated anatomical structure and a complicated
three-dimensional motion. Mot only a faithful de-
scription of normal function, but also identification
and treatment of disfunction presents many problems.

Kinematical models of the knee joint, based on the
theory of the four-bar mechanism, have been de-
veloped by Zuppinger (1904), Menschik (1974) and
Huson (1974). In this type of model force action in the
structures of the joint is not considered.

In the models developed by Morrison (1970) and
Crowninshield (1976) force action in these structures is
studied but several simplifications were introduced
concerning the kinematical behaviour. In the model of
Morrison (1970) the knee joint was assumed to be a
simple hinge joint and in the model of Crowninshield
(1976) the motions in the joint were based on experim-
ental data in the literature, which are, however, often
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contradictory. Moreover, the contribution of the cur-
ved joint surfaces to the mechanical behaviour was
ignored in these models.

Recently, Andriacchi (1977) reported the develop-
ment of a model for the analysis of the motions and
forces in the knee joint, employing finite element
methods. Ligaments and capsule were represented by
non-linear springs, while the joint surfaces were mod-
elled by a number of Aat surfaces.

The model presented here takes into account the
ligaments and capsule and the three-dimensional
geometry of the joint surfaces. The curved joint
surfaces are represented by polynomials in space. Since
three-dimensional peometrical data of the joint sur-
faces are not available in the literature, these data were
measured on anatomical specimens. The model en-
ables the following 1o be calculated as a function of
flexion—extension angle and external forces: the po-
sition of the femur relative to the tibia, ligament
forces, ligament elongations, position of contact points
and magnitude and direction of contact forces.

This paper reports the theoretical background of the
model. Some results of calculations are also presented
to demonstrate the possibilities the model offers and to
show the agreement with experimental results. Special
attention is given to the anterior—posterior laxity of
the knee-joint.

FORMULATION OF THE MODEL

Assumptions and simplifications

This study is limited to the quasi-static behaviour of
the femoro-tibial joint. However, the patello-femoral
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joint can be simulated in an equivalent way. The model
includes a representation of the proximal portion of
the tibia, the distal portion of the femur and the
structures that connect femur to tibia (ligaments and
joint capsule). Like experiments described in the
literature (eg Brantigan, 1941 and Markolf, 1976), the
model describes the relative position of the femur to
the tibia as a function of the flexion—extension angle
and an external load.

Deformations of the bones and of the cartilage layer
of the condyles are ignored as these are relatively small
compared to the displacements in the joint (Walker,
1972).

The influence of menisci on the relative motion has
been studied by several authors (eg Markolf, 1976).
Although it was found that in some cases the menisci
influence the so-called stability of a joint, the menisci
are neglected in this model : introducing the menisci in
a realistic way would complicate the model
considerable.

As a consequence of these assumptions, the outer
surface of cach of the condyles of femur and tibia can
be simulated by a curved rigid surface, while the
contact areas between femur and tibia are reduced 1o
contact points.

Friction between femoral and tibial joint surfaces
will be ignored since the coefficient of friction between
cartilage surfaces, owing to the synovial fluid, is very
low (Radin, 1972).

The relative position of femur to tibia

To describe the relative position of the femur to the
tibia, the tibia can be considered to be rigidly fixed. The
geometrical data of the tibia are described in a fixed
orthogonal co-ordinate system (x, y, z) with unit vec-
tors e,, €, and e, (Fig. 1). The axis of the tibia coincides
with the y-axis, the x-axis is oriented in posterior
direction and the z-axis in lateral direction. The
geomeltrical data of the femur are described in an
orthogonal co-ordinate system (z, fi, ) with unit vec-
tors e,, g and e.. This system is fixed to the femur. The
axis of the femur coincides with the f-axis.

If the position of an arbitrary point on the femur is
indicated by the vector & in the (x, f, y)system and by
the vector ¢ in the (x, v, z)-system then:

c=a+ Td E”

where a is the vector from the origin of the (x, y,z)-
system to the origin of the (=, ff, yl-system and T is a
(3 = 3) orthogonal rotation matrix. T is considered to
be the result of three subsequent rotations o, w and ¢

T=Tip,w.d) (2}

where ¢ is the so-called fexion—exiension angle,
defined by the angle between the y-axis and the
projection of the f-axis on the (x, y}-plane (in exten-
sion ¢ = 0). For a detailed description of ¢,  and «
see Wismans (1980),
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Fig. 1. Model of the knee-joint.

Marhematical description of the joint surfaces

Since no realistic data for the geometry of the outer
surfaces of the condyles could be derived from the
literature, a device was developed for measuring these
data on an anatomical specimen (Fig. 2). With this
device the femur and the tibia are measured separately,
It consists of a dial gauge, which can move relative to
the femur (tibia) in two perpendicular directions. The
three co-ordinates of the dial gauge end placed on the
joint surface are recorded. A compuler program has
been developed to correct for the radius (= 1 mm) of
the dial gauge end. In this way a number of points
(50-100) on each condyle are measured. Deformations
of the cartilage layer, caused by the dial gauge end, are
ignored, as these are relatively small (< 0.1 mm).
Femur and tibia are provided with reference points,
with a known relative position in the extension
position of the intact point. By measuring the co-
ordinates of these points, the original extension po-
sition can be reconstructed later on,

The position vector ¢; of a point on the relevant part
of the outer surface of condyle i of the tibia (i = 1 for
the lateral condyle and i = 2 for the medial one) is
given by

€; = xe, + yix,z)e, + ze, (3}

where x, y = y{x,z) and z are the co-ordinates of that
point and y is considered as a function of x and =. This
function is approximated by a polynomial in x and =z
and of degree n:

o m=i
yhxzi= ¥ ¥ ap'd (4)
i=0 j=0
The coefficients a,; are caleulated by minimizing the
function
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Fig. 2. Device for measuring the gpeomelry of a joint.
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m m n om=i 2
3 -nin = £10- 15 aim)
r=1 r=1 =0 j=i}

(5)

Here, m is the number of measured points and
{%.7.%,) are the measured co-ordinates of point r. In
the same way the position vector §; of a point on the
relevant part of the outer surface of condyle i of the
fermur is approximated by

&I =z, + ﬁdﬂ!,}']?ﬂ + e, l:ﬁl

where 2, i = Bz, 7) and y are the co-ordinates of that
point and fi; = fdx, 7) is a polynomial in = and 7.

The accuracy of the approximation will depend on
the degree of the polynomial. In Fig. 3, which shows
the measured parts of the joint surfaces and a com-
puter representation of the mathematical approxi-
mations, the degreeis 3 for the tibia and 4 for the femur.
For this case the standard deviation is smaller than
0.5 mm.

Contact between femur and tibia

In the model contact between femur and tibia at
both condyles i=1 and i=2 is required. As a
consequence, varus-valgus motions cannot be studied
with the model. For each point of contact the following
equations must hold:

e,=a+ T (7
n, Tr) =10 {E]
{“‘. T’t.lj_] = U {9]

where n; is @ unit outward normal vector of the tibia
condyle i and

T =—),

C (10)

are independent tangent vectors to the femoral con-
dyle i, Equation (7) specifies that the contactpoint on
the femoral condyle i coincides with the contactpoint
on the tibial condyle i, while equations (8) and (9)
specify that the normal vector in the tibial contact-
point i is perpendicular to the tangent plane in the con-
tactpoint of the femoral condyle i. These equations,

condyle |

N/
Sp

" condyla 2
eomdyhe 1

Fig. 3. Measured parts of the joint surfaces and mathematical
approximations

the so-called contact-conditions, form a set of 10
independent non-linear relations.

Mathematical description of ligaments and capsule

Ligaments and capsule are represented by m springs,
The insertion point of spring j on the femur is denoted
by a vector g;in the (x, §, 7}-system, while the insertion
point of this spring on the tibia is denoted by a vectorr,
in the (x, v, z)-system (see Fig. 1), The positions of these
insertion points are measured on the anatomical
specimen used for the joint surface measurements.
With equation (1) the length |, of spring j can be
determined :

Iy=J{lir;—a— Tp,) (r;—a—Tp,]}. (11)

Soft tissues like ligaments and capsule are known to
have visco-elastic properties. Because of the lack of
accurate descriptions of these properties and for
simplicity the springs representing these structures are
assumed to be elastic. The mechanical behaviour is
approximated by a quadratic force—elongation
function:

0= kil = 1,
=0

where f is the force in spring j, k; is a constant and [, ; is
the unstrained length of spring j. The constant k;
indicates the stiffness of spring j and its numerical value
is based on experimental work of Trent (1976).
The strain &; in spring j is defined by:
Sj = I_.I{_"u_r “.3]

aj

i > 1, (12)

if <,

Accurate data on the strain in the soft structures of the
knee joint as function of the flexion-extension angle
arenot available. Only a rough indication of this strain
can be obtained from the literature (eg Brantigan,
1941). Assumptions based on these rough data are
made for the strain in the springs in extension. This
strain is called initial strain and is indicated by &,; for
spring j. The unstrained length I ; of spring j can be
calculated then with equation (13).

In the simulation of the knee joint, presented at the
end of this paper, ligament and capsule are represented
by seven springs (see Fig. 4). The constant k; and the
initial strain &, for this simulation are presented in
Table 1.

Equilibrium of the femur

The forces and the moments on the femur can be
divided into two groups:

(@) Internal loads. Forces in the springs, representing
ligament and capsule as given by equation (12) and the
contact forces between femur and tibia:

p=pmy {i=112) i14)

(b} External loads, Muscles, inertia, gravity, patella
or other external forces represented by a force F,
working on the femur in the origin of the (x §, 7}



682

LATERAL SIDE

J. Wismans, F, VELDPaUS, J. Janssen, A, Huson and P STRUBEN

POSTERIDR $IDE

Fig. 4. Position of the springs, representing ligaments and capsule.

system and a moment M_.
F,=F.,e.+ Fe, + Fee,
M,=M.e, + Me, + Me,.

(15)
(16)

Besides this a moment M, is working to achieve the
prescribed Aexion-extension angle ¢

M, =M1 (17)

where the vector 4 can be calculated employing the
principle of virtual work (Wismans, 1980). In genecral
this moment will be zero, except for extreme positions
of the joint like hyperextension. The equations for
force and moment equilibrium of the femur are used to
find the position of the femur relative to the tibia as
function of ¢, F, and M, :

F.+pny +psny+ % fiv; =10 (18)

=1

M, + M2 + pi (T8 ) xmy + ps(Té;) xmy

+ Y filTppxv =0 (19)
=1

where ¥ is a unit vector from the femoral to the tibial
insertion point.

Equations (18} and (19) are & non-linear relations.
Together with the contact conditions (7), (8) and (9),
the knee-joint is described now by a set of 16 non-
linear equations with 16 unknowns, being:
the components of the vector a

Table 1. Constant k; and initial strain &

k; Bej
Structure Abbrev. (N/mm?} (%)
Lateral collateral LC 15 5
Ant. cruciate AC 30 5
Post. cruciate PC 33 —.1
Ant. med. collateral AMC 15 -3
Post. med. collateral PMC 15 3
Lat. post. capsule CL 10 5
Med. post. capsule CM 10 5

the angles  and e

the variables indicating the contact points: x;, =, &,
nli=12)

the magnitude of the contact forces: p; and p,
the magnitude of the moment: M,

After a reduction of this set, a numerical solution is
achieved by employing a Newton—Raphson iteration
process.

SOME RESULTS OF THE MODEL

In the calculations presented here the joint surfaces
are represented by the curved surfaces as shown in Fig.
3. Ligaments and capsule are represented by seven
springs (see Fig. 4). The flexion—extension motion is
simulated by prescribing several flexion—extension
angles:

p=0°¢=5,...¢=100.

In a knee-joint specimen, depending on the magni-
tude of ¢ a certain amount of back lash can be
observed : anterior-posterior laxity, rotatory laxity
and varus-valgus laxity ey Wang, 1974, Hsich, 1976,
Markolf, 1976). So, if no external load is prescribed,
several equilibrium positions can exist for a specified
flexion—extension angle. In this paper special attention
is given to the anterior—posterior laxity, which can be
studied by prescribing a positive, respectively negative
force F, in x-direction. Figure 5 presents the dis-
placement V, . of the origin of the {a. f, 7)-system in
positive x-direction, caused by a force F, = +10N.
Similarly, the displacement ¥, _, caused by a force F_
= — 10N is presented. These relatively small forces
result in relatively large displacements for ¢ between
15 and 55 degrees. So in this part of the
flexion—extension motion the anterior-posterior lax-
ity is rather high.

This laxity decreases if a compressive force is
prescribed: eg by a force F, = —500N (+2/3 body
weight), the anterior—posterior laxity decreases by 80
per cent, which is in agreement with experimental
work of Hsieh (1976).

To compare anterior—posterior laxity resulting
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Fig. 5. Displacement of the femur in positive {F, .} resp.

negative (V, ..} x-direction caused by a positive or negative
force F, = 10N as function of the lexion—extension angle ¢.
from the model with experiments of Markolf (1976),
calculations were carried out with higher forces F. To
avoid the problem of defining a neutral joint position,
the total displacement ¥, = Voo + Voo was con-
sidered. Figure 6 presents for ¢ = 07, ¢ = 2070, = 50°
and ¢ = 90° the model results together with the results
of Markolf. Markolf’s data represent an average of 35
specimens ; major differences, however, were found in
the behaviour of several specimens.

Position af contact points

The location of the contact points as a function of
the flexion—extension angle is given in Fig, 7. Results
are given for Fo= 410N and F_= —10N. The
contact points on the tibia move in agreement with
experimental observations (Walker, 1972), 10-15mm
in posterior  direction. The first part of the
flexion—extension motion (g: 0°...25%) is mainly a
rolling motion, while in the second part a gliding

12
[ MODEL a5l

b ENPERIMENT o

10
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EY] 100 150 200 2;50

— FxiN]

Fig. . Displacements ¥, of the femur in x-direction as
function of an external force F, at four flexion—extension
angles.
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motion prevails. These resulls are in agreement with
the work of Zuppinger (1904),

Strain in ligaments and capsule

The strain & in the springs as a function of the
flexion—extension angle, is given in Fig. 8. Calculations
were carried out for Fo= + 10N and F, = — 10N,
Figure & shows the average sirain. A negative strain
{dotted ling) indicates a tensionless state of the liga-
ment or the capsule,

As fMlexion proceeds, the lateral collateral ligament
(LC) and the posterior capsule (CL and CM ) decrease
in length, which is in agreemeni with experimental
observations,

As each of the cruciates has been simulated by one
spring, and as the cruciates show a different tension
state in several parts (eg Wang, 1973) it is not possible
at this juncture to compare model predictions with
literature data. Moreover there are many contradic-
tory statements about the changes in length of the
cruciates.

The behaviour of the two parts of the medial
collateral ligament (AMC and PMC) is in agreement
with Bartel's experiments (1977) on the changes in
length of corresponding ligament parts.

Sensitivity analysis

The sensitivity analysis study was undertaken 1o
evaluate the model response due to some of the model
parameters and to gain a better understanding of the
function of the elements in the model. A complete and
detailed documentation of this study is given by
Wismans (1978, 1980). In this paper a tabular sum-
mary of the influence of some of the parameter
variations on the anterior-posterior laxity (F, =
+ 10N) at four flexion—extension angles is given
(Table 2).

(1) Stiffness. Ligament stiffness in the reference run
was based on literature data (Trent, 1976), represent-
ing an average of 6 specimens. The stiffness of the
individual specimens did not exceed 2% the average
vilues. So a calculation was carried out with the
constant k; doubled. The effect of this variation on the
anterior—posterior laxity was found to be rather low,

(2, 3) Initial strain. The initial strain of the springs
was estimated from very rough descriptions in the
literature, The variability of this parameter between
specimens is expected 1o be fairly high. Moreover, this
strain will nol be constant in a ligament or capsule
structure. In the calculations the effect on the
anterior-posterior laxity of a relatively small variation
in the initial strains was found to be very important.

(4, 5, 6) Ligament insertions. The insertion areas of
the ligaments and capsule were measured on the
anatomical specimen used for the joint surface
measurements. The spring insertions were located
within these insertion areas. Table 2 records the effect
of some variations of the femoral insertion of the
spring representing the anterior cruciate. These vari-
ations were chosen within the insertion area of the
anterior cruciate. A shift of the insertion in lateral
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Fig. 7. Position of the calculated contact peints as function of the flexion-extension angle ¢ and of an
external force F, = + 10N and F, = — 10N,

direction (z = 4+ 5mm) was found to have no signi-
ficant effect. Displacements, however in a sagittal
plane, effect in the flexion position of the joint the
anterior—posterior laxity.

(7,...11) Cut of ligamenis. In experiments with
specimens the influence of ligaments were studied by
cutting these structures (eg Brantigan, 1941). In the
model this can be (simply) simulated by omitting one
or more springs from the model. From the results of
the calculations presented in Table 2 it can be con-
cluded that the anterior—posterior laxity is mainly
affecied by the anterior and posterior cruciate, which
accords with experimental findings.

IMSCUSSION AMD COMNCLUSIONS
Validation of a model is established when the model

predictions correlate acceptably with observed facts.
No validation experiments were planned as part of the

—_—E %]

Fig. &

Calculated
flexion—extension angle g.

strains & as function of the

project, so model predictions could only be compared
with experiments described in the literature. Since the
experimental conditions are only partially known and
on account of the variability between specimens any
comparison must perforce be very rough. To eliminate
these effects, it is planned to conduect validation
experiments with specimens whose geometrical data
will be used as input for the model.

The anterior—posterior laxity, which was the special
object of the results presented in this paper, was
compared with experiments by Markolf (1976). The
shape of the model responses and the experimental
curves are quite similar (Fig. 6). The deviation in
magnitude which occurs for higher force levels
(Fy > 75N} may be caused by the absence of menisci
and of vascular, muscular and tendinous structures in
the model. The influence of a compressive force on the
anterior-posterior laxity, the effect of cutting liga-
ments, the motion of the contact points on the tibial
joint surfaces and the strain pattern of the collateral
ligaments and the posterior capsule also accorded
quite well with experiments described in the literature.
It was concluded therefore that the model presented,
describes many aspects of the mechanical behaviour of
the knee-joint in a realistic way.

Several sensitivity analyses were carried out to study
the influence of some of the parameters on the
anterior—posterior laxity. From these studies it could
be concluded that the model was rather insensitive to
variations in the stiffness of ligaments and capsule. The
strain of the springs in extension, however, which
indicates the tension state of ligaments and capsule
appears to have a major effect on the
anterior-posterior laxity. Consequently, in the future
special attention will be given to this parameter.
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Table 2. Influence of some model parameters on anterior—posterior laxity (| F, | = 10N)
Change in anterior—posterior laxity
¢=0 ¢ =30 th = 6l =90
(mm {mm} {mm) {mm})
1. Stiffness k; for all springs doubled (15 — 30, etc)* ={.2 = 0.6 =03 =03
1. Imitial strain &, for all springs increased by 19, (39 = 6%, .. etc* -0l -19 — L3 -0.1
3. Initial strain «,; for all springs decreased by 1% (5% — 4% ... etc)* + 1 + 1.5 + (LB + 03
4, Diisplacement of femoral insertion of anterior cruciate (x: + 5 mm)# + 15 +4 +55
5, Displacement of femoral insertion of anterior cruciate (x: — 5 mm)# —232 Lk —03
6. Displacement of femoral insertion of anterior cruciate (x: +5mm)¥ 1] +02 0 =103
7. Cut lateral collateral ligament {LC) 0 i [i] 1]
. Cut medial collateral ligament (M) 0 +1 + 0.4 0
9. Cut anterior cruciate (AC) + 1.0 +11.7 + 6.0 i
10, Cut posterior cruciate (PC) 0 + 9.8 + 20.3 + 244
11. Cut anterior and posterior cruciate (AC + PC) + 140 + 209 + 252 1
04 4.5 09 07

Anterior—posterior laxity in reference simulation,

*Refer to Table 1.

TDisplacements are defined in the extension position of the joint. The initial strains were not changed.

Mot calculated,

The primary aim of this model is to gain a better
understanding of the function of the knee joint and its
several structures, Besides this, the model could be
applied in several fields, eg.:

(&) computations of force distributions during walk-
ing and other activities;

(b) evaluating surgical operations such as higament
reconstructions;

ic) evaluating the effects of inaccurate positioning of
condylar prostheses;

id) evaluating diagnostic methods for ligament
injuries;

() studving the injury mechanism in a knee joint.

The model has been developed for the knee-joint,
but similar joints can also be analysed with the model,
if geometrical data and material characteristics are
available. For other types of joints the underlying
theory can be generalized to develop equivalent
models.
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MOMENCLATURE

a position vector of origin moving co-ordinate
system

© position vector of a point on a tibial joint
surface

(e, e.el unit vectors in (x, ¥, z)-system

le..epe.) unit vectors in (x, {1, 7)-svstem
force in a spring

F, external prescribed force

k constant, characterizing the stiffness of a spring

i distance between femoral and tibial insertion
of a spring

Iy unstrained length of a spring

i number of springs

M, external prescribed moment

n degree of a polynomial
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unit outward normal vector to tibial joint
surface

contact force

position vector of tibial insertion of a spring
(3= 3) rotation matrix )

unit vector from femoral to tibial insertion
fixed co-ordinate system connected with the
tibia

moving co-ordinate system connected with
femur

o

position vector a point on a femaoral joint
surface

strain in a spring f

sirdin in a spring Jj in extension

unit vector indicating the direction of the
mament M,

position vector of femoral insertion of a spring
unit tangent vectors to femoral joint surface
fexion-extension angle

angles to describe rotations of the femur.



